Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(7): 6410-6419, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315790

RESUMO

In the present work, we report a facile and simple strategy to functionalize graphene with the chloromethyl (CH2Cl) functional group as a nanoplatform for effectual loading of the 5-fluorouracil (5-FU) anticancer drug. To achieve the highest loading capacity, hydrochloric acid concentration, the quantity of paraformaldehyde, ultrasonic treatment time, and stirring duration were all carefully optimized. The results revealed that the optimum conditions for functionalizing graphene were obtained at 70 mL of hydrochloric acid, 700 mg of paraformaldehyde, and times of 35 min and 2 h of ultrasonication and stirring. Later, the drug (5-FU) was loaded onto CH2Cl-functionalized graphene through hydrogen bonding and π-π interactions. The chemical structure of the functionalized material and the loading of the 5-FU drug were confirmed by FTIR analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The 5-FU loading capacity of as-prepared materials was determined using the ion chromatography instrument. Our findings demonstrate that chloromethylated graphene is a very excellent nano-platform for high-efficiency drug loading, yielding a loading capacity of 52.3%, comparatively higher than pure graphene (36.54%).


Assuntos
Antineoplásicos , Formaldeído , Grafite , Polímeros , Fluoruracila/química , Grafite/química , Ácido Clorídrico , Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
2.
ACS Appl Mater Interfaces ; 13(33): 39791-39805, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34397209

RESUMO

In the present study, the carbon monoxide (CO) sensing property of Cu(II)-l-aspartic acid nanofibers/polyaniline (PANI) nanofibers composite was investigated at room temperature. The nanofiber composite was formed through the ultrasound mixing of emeraldine salt PANI nanofibers and Cu(II)-l-aspartic acid nanofibers, which were synthesized by using a polymerization process and simple self-assembly method, respectively. The nanofibers composite demonstrated a branched structure in which the Cu(II)-l-aspartic acid nanofiber framework is similar to the trunk of a tree and the polyaniline nanofibers is like its branches. It seems that this special structure and one-dimension/one-dimension interface are suitable for gas adsorption and sensing. The performance of the prepared sensor toward CO gas was investigated at room temperature in a wide concentration range (200-8000 ppm). The experimental results indicate that the incorporation of amino acid-based copper metal-biomolecule framework nanofibers to PANI nanofibers enhances the response value (12.41% to 4000 ppm), yielding good selectivity and acceptable response and recovery characteristics (220 s/240 s) at room temperature. The detection limit of Cu(II)-l-aspartic acid nanofibers/PANI nanofibers sensor for carbon monoxide is obtained at 120 ppm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...